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Abstract

In this paper we study the application of the Affine Morphological Scale Space (AMSS)
to corner detection with subpixel precision. Corner detection techniques are in general
very sensitive to noise, so some kind of filtering is usually needed to remove noise before
estimating the corner location, however, the filtering procedure changes the location of
the corner, so the filtering introduce errors in the corner location. If we use the AMSS
scale space as filtering, we can solve this problem because following the evolution of the
maxima of the curvature across the scales we can recover the original location of the
corners with subpixel precision. We apply this technique of corner detection to calibrate
a camera system using a calibration object.
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1 Introduction

One of the main concepts of vision theory and image analysis is multiscale analysis (or

”scale space”). Multiscale analysis associates, with an original image u(0) = u0, a se-

quence of simplified (smoothed) images u(t, x, y) which depend upon an abstract param-

eter t > 0, the scale. The image u(t, x, y) is called analysis of the image u0 at scale t, (see

[1], [9], [13] for more details).

The datum of u0(x, y) is not absolute in perception theory, but can be considered as the

element of an equivalence class. IfA is any affine map of the plane, u0(x, y) and u0(A(x, y))
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can be assumed equivalent from a perceptual point of view. Last but not least, the

observation of u0(x, y) does not generally give any reliable information about the number

of photons sent by any visible place to the optical sensor. Therefore, the equivalence class

in consideration will be g(u0(A(x, y)), where g stands for any (unknown) contrast function

depending on the sensor. These considerations lead us to focus on the only multiscale

analysis which satisfies these invariance requirements: the Affine Morphological Scale

Space (AMSS). This multiscale analysis can be defined by a simple Partial Differential

Equation
ut = t

1
3 (u2yuxx − 2uxuyuxy + u2xuyy)

1
3 (1)

where u(t, x, y) denotes the image analyzed at scale t and the point (x, y). This Multiscale

Analysis has been introduced by Alvarez, Guichard, Lions and Morel in [1].

The remainder of this article is organized as follows: Section 2 presents the technique

that we propose to estimate the corner location based on the evolution of the extrema

of the curvatures across the scale using the AMSS scale space. In section 3 we present

a general overview of the problem of multiple camera system calibration. In section 4

we present an application of the proposed corner detector to camera calibration using a

calibration grid. Finally, in section 5, we present the main conclusions of this paper.

2 A robust morphological corner detector

The differential operator of the right part of equation (1) is not new in the framework of

corner analysis. For instance, Kitchen and Rosenfeld [8] proposed a measure of cornerness
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based on the local maxima of the operator

u2yuxx − 2uxuyuxy + u2xuyy
u2x + u

2
y

which corresponds to the second directional derivative in the direction orthogonal to the

gradient. The curvature in a point (x, y) of a level line passing by (x, y) is defined by the

operator:

curv(u) =
u2yuxx − 2uxuyuxy + u2xuyy

(u2x + u
2
y)

3
2

(2)

The corner detection is based on the threshold of the absolute value of the extrema of

this operator.

The main problem with these kind of local measures for corner detection is that they

are very sensitive to noise. To avoid this problem, different authors, see for instance [10],

[12], and [5], have proposed models based on the gaussian linear multiscale analysis, which

corresponds to the convolution of the original image with gaussian functions of increasing

width.

The AMSS multiscale analysis presents the advantage that we know, analytically, the

displacement of the corner location across the scales. Indeed, in [2], authors show that

if (x0, y0) is the location of a corner (extremum of the curvature) in the original image

u0(x, y), then if α is the angle of the corner and ~b = (bx, by), is the unit vector in the

direction of the bisector line of the corner, then, the location (x(t), y(t)) of the extrema

of the curvature across the scales is given by the expression:

(x(t), y(t)) = (x0, y0) + tan(
α

2
)−

1
2 t(bx, by)
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of course this result is for an ideal corner without any kind of noise. The technique that

we propose in this paper use this result to estimate the corner location in a robust way

and can be decomposed in the following steps:

robust morphological corner detector algorithm

1. We compute, using AMSS, the image u(tn, x, y) at the scale tn = t0 + n4t, for n =

1, ..,N, where 4t represents the discretization step for the scale and t0 represents

the initial scale that we use to begin to look for corners.

2. We compute for the scale t0 the location of the extrema of the curvature that we

denote by (xi0, y
i
0), for i = 1, ..,M , these points represent the initial candidates to be

corners. We follow across the scales the location (xin, y
i
n) of the curvature extrema.

3. For each sequence (xin, y
i
n)n=1,..,N , we compute in a robust way (using orthogonal

regression and eliminating outliers) the best line which fit the sequence of points,

this line corresponds to the bisector line of the corner. We compute also in a robust

way the best line passing for the points (tn − t0, d ((xin, yin), (xi0, yi0)). The slope of

such line corresponds to the value tan(α
2
)−

1
2 . After the elimination of outliers the

sequence will be reduced to (xink , y
i
nk
)k=1,..,Nk . The outlier are usually produced by

noise and are located mainly in the first scales. So tn1 represents the first scale where

the corner is properly estimated. We also estimate, the direction of the bisector line

(bix, b
i
y)

4. Finally, we estimate the location (xi, yi) of the associated corner in the original
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Figure 1: Motion parameters derived from point matches.

image u0(x, y) as:

(xi, yi) = (xin1, y
i
n1
)− tan(α

2
)−

1
2 tn1(b

i
x, b

i
y)

Remarks: For more details on the discretization of the AMSS scale space see [4], for more

details on the robust estimation of lines eliminating outliers see the RANSAC technique

in [7]

3 Multiple Camera Calibration

The problem of multiple camera calibration consists in recovering the camera positions

and orientations with respect to a world coordinate system, using as input data tokens,

such as pixels or lines, in correspondence in different images. The figure 1 shows this

scenario for a system with two cameras.

The specification of the i-th camera position is the 3D point C(world)i , where the su-

perscript is the reference system in which is the magnitude expressed. The orientation
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specification is a rotation matrix R(world)i or any equivalent representation, such as quater-

nions or Euler angles.

When the images tokens in correspondence are projections of a set of 3D points

{Mj}j=1..N where N is the number of points, is possible to reconstruct each point 3D

expressed in the world coordinate system by simply estimating the intersection point of

the line set:

½
ri ≡ C(world)i + λ

−−−−−−−−−−−−−→
C
(world)
i R

(world)
i m

(i)
ij

¾
i=1..N

where C(world)i are the coordinates of the optical center in the world reference system, and

m
(i)
ij are the coordinates of the projection of Mj in the normalized reference system for

the i-th camera. A reference system said to be normalized when the optical center is in

the origin and the focal distance is 1. We will assume that the intrinsic parameters of the

cameras are known, which allow us to normalize the reference system.

In order to estimate the 3D point intersection of the line set is necessary to know

the position of the optical center and the rotation matrix for each one of the cameras.

The computation of this parameters resolves the problem of the multiple camera calibra-

tion. After estimating these parameters, we can evaluate the accuracy of the solution

by projecting the reconstructed 3D points in each camera, and the best solution for the

calibration problem is the one that minimizes the energy function:

f(C
(world)
0 , C

(world)
1 , ..., R

(world)
0 , R

(world)
1 ...) =

X
i,j

°°°m0(i)
ij −m(i)

ij

°°°2
where m0(i)

ij is the projection of the reconstructed point Mj in the camera i.
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There is no closed-form solution for the minimization of the above energy, and non-

linear minimization methods must be used.

A restriction to take into account in the application of these methods is that the

solution must be not only minimum but also valid. A solution is valid when both the

matrixes are rotation matrixes and the reconstructed 3D points are always beyond of the

image plane, since the reference system in the camera is normalized.

It is important to find a good initial approximation, close to the final solution, to supply

as seed input to the nonlinear minimization method to guarantee a fast convergence. This

initial solution can be obtain by using the linear methods described in [11]. With this

method is possible to calibrate a system with only two cameras. To extend the method to

more than two cameras is enough to carry out the calibration for each couple of cameras

(the first camera and the second, the second and the third, and so on) and to fit a scale

factor for each couple of cameras. This method has the advantage of being linear and the

disadvantages of being very noise sensitive (hence the importance of a good estimation

of the coordinates points provided by a corner detection technique). On the other hand,

the method does not take advantage of having multiples cameras to improve the result of

the calibration.

4 Application to Camera Calibration

We have tested the methods previously described using the images in figure 2 as stereo

calibration patterns.

Points m(i)
ij are the normalized coordinates of the square vertexes in the i-th image.
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Figure 2: Stereo pattern calibration.

They have been obtained using the morphological corner detector and the correspondence

between the points of different images has been carried out manually.

A graphics representation of the result is shown in figure 3. The numerical results

have a mean error of 0.1741 of pixels and a standard deviation of 0.0039 of pixels.

These images are the reconstructed solid, shown using a VRML file. The syntax of

language allows specifying the position and the orientation of an observer in the world.

Next, we used as position and orientation the solution of the multiple camera calibration

in order to obtain a similar perspective as in figure 2.

For the basic linear algebra operations, we used the multiprocessor implementation

of the BLAS library of the Silicon Graphics. For the problem of finding eigenvalues

and eigenvectors and the resolution linear equations system, we used the multiprocessor

implementation of the LAPACK of Silicon Graphics. To minimize the error function
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Figure 3: Reconstructed stereo pattern calibration.

we used the implementation of the Levenberg-Marquardt algorithm in the beta gsl 6.0

library of GNU. We parametrized the solution using the three Euler angles, because after

each iteration we obtain a rotation matrix. To compute the Jacobian matrix we used the

MINPACK library.

5 Conclusions

Corner detection is an important topic in computer vision. The proposed morphological

corner detector provides a robust algorithm to estimate corners with subpixel precision.

The accuracy of the corner detector algorithm have been tested in the problem of multiple

camera calibration. We have computed a very good estimate of the extrinsic calibration

parameters based on the proposed morphological corner detector. The mean error between

the estimated corner locations and the locations of the corners after reprojection of the
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3D points is about 1/10 pixel. This result shows the high accuracy of the proposed

morphological corner detector.
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