Appendix B

Experimental Tool User
Manual

In order to make practical tests and comparisons with other LR methods, an
experimental tool has been implemented, which generates parsing tables for
discriminating-reverse LR(1), and some funny variants as LR(0) or full-stack
reverse recognizers. The program also includes generation of direct canonical
LR(1), LR(0), SLR(1), and LALR(1) (uncompressed-)table-driven parsers,
and even an automatic sentence generator, which can be used to obtain easily
nontrivial random sentences for test purposes.

Efficiency was not amongst the objectives for these implementations,
i.e., this is not a production-quality tool, since the main interest is to have
a code that could be easily modified and clear to implement directly the
algorithms and minimize the possibility of programming errors. It has been
found convenient also for didactic purposes.

This Appendix presents the user manual for the latest version of the tool.
First, the general layout is presented, showing how the different modules
interact, the file organization, the grammar and sentence formats, and the
command interface for the different modules. Finally, an example session is
reproduced.

B.1 Using the tool

The tool is invoked at the command line prompt with the program name
aut, followed by a functioning mode, asking for one of the following things:

aut gr K To generate the discriminating-reverse parsing tables

aut gd K To generate the usual direct parsing tables

K represents the parser lookahead length, which may be specified as 0
or 1 (default).

233

234 APPENDIX B. EXPERIMENTAL TOOL USER MANUAL

aut s LENGTH To generate one or more random sentences from the gram-
mar. If LENGTH is specified, sentence(s) with the nearest possible
length are generated; otherwise random length sentences are produced.

aut pr To parse an input sequence with the discriminating-reverse parsing
tables

aut pd To parse an input sequence with the direct parsing tables

First, one of the parser generators is invoked. Then, the sentence gener-
ator can optionally be invoked to produce a random sentence, or an input
text file can be manually constructed by using any text editor. Finally, the
corresponding parser is invoked with the input file.

B.1.1 Files used by the tool

The tool uses the following four files —the default names in the current
directory are shown, although at invocation time other (path) name(s) can
be given:

g.aut ASCII text file containing the specification grammar in Backus-Naur
Form (BNF). This is the input to the generators (see the section below
for the format of this file).

v.aut, p.aut Vocabulary and parsing-table file, respectively, both in inter-
nal format. They are produced by the parser generators and read by
the parsers.

s.aut ASCII text file containing a sequence to be parsed. It can be manually
written or automatically generated by aut s (see below for the format
of this file).

The use of default names allows to comfortably work without caring
about the internal files of the tool. That is, the user can write with an editor
the g.aut text file containing the grammar —two programs, yacc2aut and
aut2yacc, are available to convert yacc grammars to the tool format and
vice versa— and successively invoke the different modes, without any new
command or edition, to generate parsers or sentences and verify parses.

As previously stated, the user can specify, when appropriate, the precise
file (path) names, with the following command line options:

-gf FILEPATHNAME Grammar file.
-vf FILEPATHNAME Vocabulaty file.
-pf FILEPATHNAME Parsing-table file.

-sf FILEPATHNAME Input file to the parser containing a sequence of ter-
minals symbols.

B.1. USING THE TOOL 235

The grammar file

The grammar file is the input to the parser or sentence generators. It spec-
ifies the structure of legal sentences of the language. The file format is an
ASCII text file containing the grammar in BNF notation. More specifically,
a grammar is a sequence of rules, where each rule has the form:

nonterminal = rightpart { | rightpart } .

That is, a nonterminal name, an equal sign, and one or more rightparts
(sequences of symbols) separated by vertical bars, all ended with a dot. One
rightpart may be empty. Terminal symbols should appear between quotes
(") containing the strings as they will literally appear in sentences, formed
by any sequence of characters (quotes are represented in the sequence by
a pair of quotes). Nonterminal symbols begin with any alphabetical upper
or lower case characters or underscore (_), and may also contain numerical
characters. The start symbol is the first to appear in the file.

Grammars should be well-formed (usually called “reduced” in the litera-
ture), otherwise an error is signalled when they are processed. The following
tests are made:

e No rightpart can be repeated for the same nonterminal.
e Every terminal symbol should be generated from the start symbol.

e Every nonterminal symbol should derive sequences consisting only of
terminals or the empty sequence.

Note also that recursive rules as “A = A” are useless and make the grammar
ambiguous.

The input files to parse

After the parser has been successfully generated, we might want to test it
with an input file. The format of this file to parse is just an ASCII text
file containing the terminal symbols exactly as they appear in the grammar
(without quotes), separated by spaces or newlines. This is precisely the
format produced by the automatic sentence generator.

This simple scheme allows an easy construction of sentences, with no
other purpose than to test the parsers. The parser is intended to be inte-
grated within the Cigale system, then standard lexical analyzer features will
be available.

B.1.2 Other command line options

This section describes other command line options. Some of them are signif-
icant only in some functioning mode, some in several modes. Although this

236 APPENDIX B. EXPERIMENTAL TOOL USER MANUAL

should be evident from the explanations, you can look at the beginning of
the example session below to see which case is appropriate.

-NUMBER Specify the number of sentences to display (or redirect to a file
with >). Only the last one is saved to the sentence file. By default
NUMBER is 1.

-c¢ In case of reverse conflicts for non-LR(K) grammars, interactively ask
which action is preferred. Note that conflicting situations are detected
in pairs, and so the user is asked.

+c By default the generator stops state construction from situations in con-
flict. With this option the curious user makes the generator to continue
building states beyond conflicts until bottom-of-stack states.

+e A technique using a heuristic estimate of typical lengths of nonterminal
phrases is used by default to generate sentences, with the intention
to produce human-like sentences. With this option, that computation
is disabled, and sentences are generated purely at random, but then
results are typically very poor in comparison with the default.

+f Disable full rightparts computation, that is, do not consider in reverse
automata whether or not the lookahead part is covered by the portion
of the rightpart to the left of the marker. Without special options
activated, this option asks the generator to produce only the discrimi-
nating section of the automaton, not the additional states that would
be used to verify the presence of the handle on top of the stack.

-g DEBUGNUMBER Activate the debug flag DEBUGNUMBER. For developing
purposes only.

-i With this option the reverse parser is generated from an dnitial state
interactively specified by the user. State situations need to be specified
according to internal codes, which can be displayed using option -dgv
(see below).

+1 Produce a (direct) LALR(1) parser instead of an full LR(1) one, by merg-
ing states with the same core (non-lookahead) part. Apart from this,
no further compression is made, contrary to what is usual in other
LALR(1) parser generators, e.g., yacc.

-1 When producing a direct LR(1) parser for a non-LALR(1) grammar,
signal states that after merger with previous LR(1) states would lead
to LALR(1) conflicts.

+n SEED By default, every time the sentence generator is invoked, a different
random sentence is produced. Sometimes, repeatability is interesting,

B.2. A SAMPLE SESSION 237

and then this option can be used to always produce the same random
sentence(s). A SEED value can be optionally specified to obtain more
(repeatable) random sentences. The default value of SEED is 0.

-r a A full reverse recognizer for the whole stack is produced, which can
be compared with the usual discriminating reverse automaton. Either
LR(0) or LR(1) algorithm can be used. If suboption “a” is not specified,
situation actions are not considered during automaton construction,
which yields a smaller full-stack recognizer, although useless for action
discrimination.

+s Produce a (direct) SLR(1) parser instead of an full LR(1) one, by aug-
menting items within the LR(0) automaton states with lookaheads in
the Follow sets. The resulting states correspond to LALR(1) ones, but
sometimes the SLR(1) parsing tables have more entries.

+t CHAR Produce a file named paut.tex containing the parsing table in
text form, which can be displayed, browsed with an editor, or printed.
If CHAR is specified (usually a dot), then it is used instead of a blank
space for empty table entries. See also option -x.

+v The program produces by default some friendly output. This can be
avoided with this option, which may be of interest when the tool is
executed from scripts.

-x To help in the preparation of documents on this subject, with this option
the generator produces displayed data in IATEX notation, as well as a
file named paut.tex containing the parsing table in suitable form to
be included in a ETEX document.

Display options

There are several display options that the user can ask for in the command
line to show some results or listings. All of them begin with -d and then
a list of letters telling the display options wanted. As with other options,
display options are significant only in some modes. See the example session
below for their meaning.

B.2 A sample session

In this section, an example session is shown to give an idea of the dynamic
of working with the tool, and about the kind of results that can be obtained.

When the program is run without arguments, the following help is dis-
played —also, when an error is encountered in the command line, the user
is asked whether he wants the help to be displayed.

238

$ aut

LR(1) discriminating reverse automaton experimental tool (v10.0.3 9-10-1998)

Usage:

aut g rld[#] {-l+c -d{ailbfgsv} +f -g[#] -i +|-1 -r[al +s -t.

APPENDIX B. EXPERIMENTAL TOOL USER MANUAL

aut s[#] {-# -d{bdfgvem} +e -gl[#] +n[#] +v file}
aut p rld {-d{psu} -gl#] +v file}

Functioning modes:

g

S

p

parser Generation (reads gf; writes vf, pf)

random Sentence generation (reads gf; writes sf), with random or
given (#) length (quite approximately)

Parse (reads vf, pf, sf) with mostly manual error recovery

Automaton classes:

r
d
#

Files:

Reverse discriminating
Direct (classical)
lookahead length: O or 1 (default)

-gf path BNF Grammar File (default g.aut) with rules like:

proc_list = "proc" heading ";" proc_list |

-sf path Sentence text File (default s.aut) to parse; spaces separate

terminals.

-pf path Parsing table File (default p.aut) in internal format.
-vf path Vocabulary File (default v.aut) in internal format.

Options (some do not produce a usable parser):

-#
-c
+c
-d

4 F WO O H QT

te
+f
-g[#]

+n[#]

Number of sentences
resolve (reverse) Conflicts (by asking)
Continue (reverse) state construction beyond conflicts
Display options:
Automaton states; suboptions:
state situations (also called Items)
List actions for (stack symbol, lookahead) pairs
intput BNF grammar
sentential forms during Derivation
First and follow sets
internal Grammar
(action counts and) stack windows during Parsing
Statistics
strict parsing User time
Vocabulary; suboptions:
estimated typical 1lEnghts of phrases
Minimum and maximum lenghts of phrases
disable use of typical 1Engths of phrases
disable Full rightparts computation in situations
debuGging [option; default O]
ask (reverse) Initial state
build (direct) LALR(1) automaton
signal (direct) LALR(1) conflicts in LR(1) automaton
seed [Number; default 0]: disable randomize

+v -x file}

B.2. A SAMPLE SESSION 239

-r[al] full (reverse) Recognizer [consider Actions]

+s build (direct) SLR(1) automaton

-t. produce parsing table in plain Text using ’.’ for empty entries
+v disable Verbose output

-X produce output and parsing table in LaTeX notation

Author address: <Fortes Galvez, José> jfortes@dis.ulpgc.es.

Before using the tool, let us have a look at the grammar with which we
are going to work:

cat g.aut
=E"" T |T.
=FR.

= | Nyt F R .

= ||(|| E ||)|| | nan

fo - I s

Let us generate a random sentence (corresponding to seed number 28) of
15 symbols on default file s.aut, and display its derivation steps. You might
not get the same sentence as below, but yours should be the same each time
you run your program with the same command line below.

Invoked: aut s15 +n28 -dd

<E>:15

<E>:11 + <T>:3

<E>:7 + <T>:3 + <F>:2 <R>:1

<T>:7 + <F>:2 <R>:3 + a

<F>:4 <R>:3 + a * <F>:2 <R>:1 + a

(<E>:3) % <F>:2 <R>:1 + a * a + a
(<E>:2 + <T>:2) *a+a*a+a

(<T>:2 + <F>:1 <R>:1) * a+a *a+ a
(<F>:2 <R>:2 +a) *a+ax*xa+a
(a*x<F>:0<R>:0 +a) *xa+a*xa+a
(a*xa+a)*a+taxat+a
(a*xa+a) *xa+a*a+a

Let us produce a discriminating-reverse parser for the grammar above,
displaying the grammar itself (notice the rule numbers assigned), the au-
tomaton transition tables (LA and ST stand for lookahead and stack symbol,

240 APPENDIX B. EXPERIMENTAL TOOL USER MANUAL

respectively) and associated sets of situations, and some statistics (about the
grammar and the generated parser). Some output has been deleted to save
space.

Invoked: aut gr -dgais

Input grammar statistics:
Number of rules = 7
Average length of rightparts = 1.86
Average number of terminal symbols per rightpart = 0.71
Vocabulary:
Number of terminal symbols = 5
Number of nonterminal symbols = 4

S >~ E$
E->E+T
E->T

T ->FR

R ->

R ->
F ->
F ->

FR
E)

0O ~NO O WN -

Mo~ *

Discriminating reverse LR(1) automaton

State 1 [0123456781
1.:8 >"E$.,.8%

->
->
->
->
->
->
->
->
->
-> .
-> .

S
E +
E
E
E
E
E
T
T
T
R

: R

: R ->
R
R
R
F
F
F
F
F
F
F
F
S
S

+
+

, - §

.t

)

MMM A E
. -
~ 4 P

o oo -

M

M

~ 4+ -

->
->
->
->
->
->
->
->
->
->
> a . .
> >~"E. $,8%$.
> ->."E$, " .
c:E->E . +T, + .
:R->.*%FR, * .

HEEEm T T

W WWOOWNNNNO0O0O0O OO D DWWWNNN
~ % + B~ + &

O O O O ¢« ¢ s+ s & s s e e e s
OO PP AN AN K K K

— % + &

B.2. A SAMPLE SESSION

LACO
LA(Ca)
ST (a)
ST(E)
ST($)
ST(T)
ST(R)
ST())
ST (F)

State

ST(E)

State
1.

ST(")

O OO OO0 O0OO0OO0ODOOCOOOCOUUOol gl o1 o1 © OO
wn T

:F->(CE .) ,)
:F->.(E), (

: F->.a, a
:T->F.R, . $
:R->%F.R, . $
: T->F.R, . +
:R->%F . R, +
:T->F.R, .)
:R->%F . R, .)
: T ->F R, *
:R->*%xF . R, *
:T->.FR, (.
:R->% . FR, (

: T->.FR, a.
:R->% . FR, a
c:E>E+ .T, (.
c:E->.T, (.

: E->E + T, a
:E->.T, a.

: 82 >~ ., E$, (.

1
v
~
=
~
~

>~ .E$, a.

c:F->(C(.E), a.

= Shift
= Shift
= Reduce 8
= Shift
= Go To
= Go To
= Go To
= Go To
= Go To

U WN

2 [11

: 8 >~"E. $, . $

= Go To 10

10 [1]1]

: 8 >~ .E$, . $

= Reduce 1

End of generation.

Automaton statistics:
Number of states = 10

Number of transitions & actioms

26

241

242

APPENDIX B. EXPERIMENTAL TOOL USER MANUAL

Now, let us try the parser with the previously generated sentence and
display the parsing stack just before each reduction. The pairs of numbers
at the left of each line count the number of shifts and reduces. The terminals
between parenthesis before each nonterminal correspond to the first terminal
of its corresponding phrase in the sentence. Some parsing statistics are also

displayed.
Invoked aut pr -dps

~(a * a+a)*a+a*
4,1 ~ ((a)F * a +a) *xa+a*a+
4,2: =~ ((a)F * (a)F +a)*a+ax*xa+t
4,3: ~ ((a)F * (a)F (H)R +a)*a+ax*xa+
4,4: ~ ((a)F (¥)R +a)*xa+a*xa+
4,5: =~ (()T +a)*a+ax*xat+t
6,6: ~ ((a)E + a) *a+ax*xa+a$
6,7: ~ ((A)E + (a)F) *at+taxa+a$
6,8: =~ (()JE + (a)F O)R)*a+axat+ta$
6,9: ~ ((Q)JE + (a)T) *at+taxa+a$
7,10: ~ ((a)E) *a+a*a+a$$s$
9,11: ~ (OF * a +a*xa+ta$$ss$
9,12: ~ (OF * (a)F ta*xat+ta$$ss
9,13: =~ (()F * (a)F (+)R +axa+a$$ss$
9,14: =~ (OF (%R ta*xa+ta$$s$s
9,15: =~ (OT +a*xa+a$$ss
11,16: =~ (QE + a *xata$$$sss
13,17: =~ (QE + (a)F * a +a$$$3$388
13,18: ~ (QE + (a)F * (a)F +ta$$s s
13,19: =~ (QE + (a)F * (a)F (VR +a$$$333%%5$
13,20: ~ (QE + (a)F (*)R +a$$ssssss
13,21: =~ (QE + (a)T +a$$$sssss
15,22: =~ (QE + a 3333338383
15,23: ~ (QE + (a)F $3333338% 8
15,24: =~ (QE + (a)F ($)R $$3333338% 8
15,25: ~ (QE + (a)T $$3$333$$8% 8
16,26: ~ (QE $ $3353338888

Successful end of parsing.

Statistics:

Number of shift actions = 16

Number of reduce actions = 26

Average length of reductions = 1.54

Maximum stack length =7

Average stack length = 3.95

Average depth of stack exploration per shift action = 0.50
Average depth of stack exploration per reduce action = 2.00
Average number of state transitions per action = 0.86

Let us now compare the above results with a direct canonical LR(1)
parser. First, let us generate the parser, displaying only the automaton
tables (NS stands for next symbol, that is, current lookahead) and some
statistics (the output has been partially deleted).

B.2. A SAMPLE SESSION 243

Invoked: aut gd -das

Input grammar statistics:
Number of rules = 7
Average length of rightparts = 1.86
Average number of terminal symbols per rightpart = 0.71
Vocabulary:
Number of terminal symbols = 5
Number of nonterminal symbols = 4

Direct (classical) LR(1) automaton
State 1

NS(E) = Go To
NS(T) = Go To
NS(F) = Go To
NS(() = Shift
NS(a) = Shift

O WN

State 2

NS($) = Shift 7
NS(+) = Shift 8

State 26

NS(*) = Reduce 7
NS()) = Reduce
NS(+) = Reduce 7

~

State 27

NS()) = Reduce 6
NS(+) = Reduce 6

End of generation.

Automaton statistics:
Number of states = 27
Number of transitions & actions = 80

Finally, let us try the generated direct parser with the same sentence. In
this case, before each parsing stack state its corresponding symbol is shown.
As before, the stack is only displayed before each reduction.

Invoked: aut pd -dp
(:5 a:15 *a+a) *xa+a*
(:5 F:13 *:21 a:15 +a) *xa+a*xa+t

244 APPENDIX B. EXPERIMENTAL TOOL USER MANUAL

(:5 F:13 *:21 F:25 +a)*xa+a*a+t

(:5 F:13 *:21 F:25 R:27 +a) *xa+a*at+t
(:5 F:13 R:20 +a) *xa+ax*xa+t

(:56 T:12 +a) *a+ax*xa+

(:5 E:11 +:19 a:15) *a+ax*xa+a$

(:5 E:11 +:19 F:13) *a+ax*xa+a$

(:5 E:11 +:19 F:13 R:20) *a+ax*xa+a$
(:5 E:11 +:19 T:24) *a+ax*xa+a$

(:5 E:11):18 *a+axa+as

F:4 *:10 a:6 ta*xa+ta$$s$s

F:4 %:10 F:17 ta*xa+a$s$$s

F:4 *:10 F:17 R:23 +axa+ta$$s$s

F:4 R:9 +a*xa+t+a$sss

T:3 ta*xa+ta$$ss

E:2 +:8 a:6 *at+ta$$ssss

E:2 +:8 F:4 *:10 a:6 +ta$$ssssss
E:2 +:8 F:4 #:10 F:17 +a$$$$33%9%$
E:2 +:8 F:4 *:10 F:17 R:23 +a$$P s
E:2 +:8 F:4 R:9 +a$$$$8888

E:2 +:8 T:16 +a$$$838%$

E:2 +:8 a:6 333338883

E:2 +:8 F:4 $$$888888 8

E:2 +:8 F:4 R:9 $$$33353% s

E:2 +:8 T:16 $$$3888888

E:2 $:7 33333838858

Successful end of parsing.

